Personal Data Sheet (PDS)

1.	Name	:	Dr. Md. Wali Ullah
2.	Father's name	:	Md. Yasin Ali
3.	Mother's name	:	Mrs. Rahima Khatun
4.	Husband's name (if applicable)	:	Not Applicable
5.	Gender	:	Male
6.	Present Address	:	Senior Scientific Officer, Molecular Biology
			Department, Genetic Resources and Seed
			Division, Bangladesh Jute Research Institute,
			Manik Mia Avenue, Dhaka-1207
7.	Permanent Address	:	Village- Parulia, Post Office- Parulia,
			Upazila- Debhata, District- Satkhira
8.	Date of birth	:	26-10-1979
9.	Age (as on 01-01-2023)	:	43 years 02 months 06 days
10.	Educational Qualification	:	

Degree/Diploma/	Board/University	Year of Passing	Division/Class/Grade
Certificate			
S.S.C	Jessore	1995	First Division*
H.S.C	Jessore	1997	First Division
B.Sc.Ag/M.Sc./Eqiv.	Sher-e-Bangla Agricultural University, Dhaka-1207	2001 (Held 2004)	First Class
M.Sc.Ag/Equiv.	Sher-e-Bangla Agricultural University, Dhaka-1207	2006	Grade A (CGPA-3.65 out of 4.00)
M.Sc.Ag/Equiv.	Kochi University Faculty of Agriculture, Japan	2010	Satisfactory
Ph.D.	Ehime University, Faculty of Agriculture, Japan	2014	Awarded

11. Field of Specialization:

- (a) Knowledge and working experience on host-pathogen interactions at the physiological and molecular level which makes aware about the plant-microbe interactions.
- (b) Experience of work in the microbial pathogenicity mechanisms and virulence diversity whose elucidation will have the most far-reaching effect in explaining and controlling disease development.
- (c) Acquainted and working experience in next generation genome sequencing, DNA fragment sequencing and manually sequenced data analysis.
- (d) Expertise and working experience on different molecular techniques, such as:
 - i. Site-directed/ Knock out/ Transposon mutagenesis, Recombinant expression vector construction, Phylogenetic tree construction, Cloning (eg. TA, Blunt ended, Seamless, Gateway, In-Fusion), Real Time-PCR, Reverse Transcription-PCR, Primer designing, PCR, DNA, RNA isolation.
 - ii. Transformation system in bacteria, fungi and plant (Tissue culture depended and independent).
- (e) Acquainted and working experience with different bioinformatic tools, such as: Augustus, geneid, GeneMark, CAP3, Batch web CD search / Domain search, seqMassager, reverse-complement, Uniprot, InterProScan, SMART, Pfam, Expasy, HMMER, ORF Finder, CodonCode Aligner, MEGA, Clustal W/omega/X, GenScript, Oligos 6.2, Oligo Analyzer Version 3.1 (IDT), Oligonucleotide Properties Calculator, BioEdit, SnapGene, TreeView, BLAST.
- (f) Well versed in bacterial phenotypical characterization (Motility, siderophores production, biofilm formation, pigmentation, multi-drug tolerance, bio-surfactants).
- (g) Expertise in different machine handling, such as:

PacBio Sequel (Third generation genome sequencing machine), PFGE (Pulsed-field gel electrophoresis), BluePippin (DNA size selection for next generation sequencing with Pulsed-Field), Megaruptor (Fragmentation/shearing of genomic DNA for next generation sequencing), and Microscope (Laser Scanning Microscope, compound and simple).

12. Training:

(a) In Country:

SI.	Organization	Year	Duration		Name of Program
No.			Mos.	Days	
01.	Eppendorf Venue: BARJ, BJRI	2017	-	03	Training on Eppendorf Fermentor Bioflo 415 (SIP)
02.	ESCO Biological Safety Institute Venue: BARJ, BJRI	2017		01	Overview & Safe Use of Laboratory Ventilation Equipment (Laminar Air Flow, Biosafety Cabinets and Fume Hood)

Sl.	Organization	Year	Dur	ation	Name of Program
No.			Mos.	Days	
03.	Pacific Biosciences Venue: Basic and Applied Research on Jute project, Bangladesh Jute Research Institute, Dhaka	2018		05	Pacific Biosciences New SEQUEL Instrument Post Installation Application Training With 30kb SMRTbell Express Libraries Prep.
04.	The Jackson Laboratory (online course)	2020		01	Basics of CRISPR/Cas9
05.	The Jackson Laboratory (online course)	2020		01	CRISPR/Cas9 and Cre-lox Technologies Certificate program
06.	Bangladesh Jute Research Institute, Dhaka	2022		01	Service Commitment (Citizen's Charter)
07.	Bangladesh Jute Research Institute, Dhaka	2022		01	e-Governance and Innovation Action Plan Implementation
08.	Bangladesh Jute Research Institute, Dhaka	2022		01	Office Management and Skill Development
09.	National Agriculture Training Academy, Gazipur	2023		05	Crop improvement through Plant Biotechnology

(b) Abroad:

SI.	Organization	Year	Duration		Name of Program
No.			Mos.	Days	
01.	Kochi University, Japan	2007-2008	06		Japanese language
02.	Kochi University General	2010		05	Basic Course of Teaching
	Education Center, Japan	2010		05	Assistant
03.	Kochi University, Japan	2015		05	Laser scanning microscope
		2013		05	handling

13. Experience:

Position	Period		
	From	То	Total (Yr./Mo)
Teaching Assistant, Laboratory of Plant			
Pathology and Biotechnology,	01/04/2008	31/03/2013	
Kochi University, Japan			Five (05) years
Research Assistant, Laboratory of Plant			
Pathology and Biotechnology,	01/04/2010	31/03/2013	
Kochi University, Japan			
Post-doctoral/Rendai Research Fellow,			Two (02) years
The United Graduate School of Agricultural	01/10/2013	31/03/2016	and Six (06)
Sciences, Ehime University, Japan.			months

Position		Period	
	From	То	Total (Yr./Mo)
Biotechnologist, Basic and Applied Besearch on Jute Project	02/04/2016	30/06/2021	Five (05) years
Bangladesh Jute Research Institute,	02/04/2010	50/00/2021	months
Senior Biotechnologist, Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute	01/07/2021	24/01/2022	Seven (07) months
Senior Scientific Officer (SSO) Molecular Biology Department, Genetic Resources and Seed Division, Bangladesh Jute Research Institute (Currently working as a Senior Biotechnologist at BARJ project with office order)	25/01/2022	Till now	

14. Publication:

(a) l	Full Scientific paper as principal author: 03
Sl. No.	Published paper
01.	Md. Wali Ullah, Md. Samiul Haque and Md. Shahidul Islam. 2019. First Report of <i>Fusarium oxysporum</i> Causing Fusarium Wilt on Jute (<i>Corchorus olitorius</i>) in Bangladesh. Plant Disease 103(10):2673-2673. DOI: <u>https://doi.org/10.1094/PDIS-05-19-0945-PDN</u>
02.	Md. Wali Ullah , Yuka Mori, Risa Maenaka, Kenji Kai, Masayuki Tanaka, Kouhei Ohnishi, Akinori Kiba and Yasufumi Hikichi. 2015. The <i>N</i> -acetyltransferase gene-implicated iron acquisition contributes to host specificity of <i>Pseudomonas cichorii</i> strain SPC9018 and its virulence. Physiological and Molecular Plant Pathology 92 :14-21. DOI: <u>https://doi.org/10.1016/j.pmpp.2015.08.008</u>
03.	Md. Wali Ullah, Risa Maenaka, Yuka Mori, Daisei Ueno, Kenji Kai, Kouhei Ohnishi, Akinori Kiba, Hideo Hayashi and Yasufumi Hikichi. 2015. Implication of limited iron acquisition of <i>Pseudomonas cichorii</i> strain SPC9018 in reduction of its virulence on eggplant. Journal of General Plant Pathology 81 (2): 136-141. DOI: <u>https://doi.org/10.1007/s10327-014-0569-4</u>
(b)	Full Scientific paper as associate author: 11
01.	Borhan Ahmed, Mobashwer Alam, Nasima Aktar, Md. Sabbir Hossain, Md. Wali Ullah , Kazi Khayrul Bashar, Shah Md Tamim Kabir, Emdadul Mannan Emdad, Md. Shahidul Islam. 2023. Genome-wide investigation of aquaporin genes in Corchorus spp and their role in organ development and abiotic stress tolerance. Journal of Plant Gene. In press. DOI: https://doi.org/10.1016/j.plgene.2023.100410

02.	Md. Abu Sadat, Md. Wali Ullah, Md Sabbir Hossain, Borhan Ahmed and Kazi Khayrul Bashar. 2022. Genome-wide in silico identification of phospholipase D (PLD) gene family from <i>Corchorus capsularis</i> and <i>Corchorus olitorius</i> : reveals their responses to plant stress. Journal of Genetic Engineering and Biotechnology 20, 28. DOI: <u>https://doi.org/10.1186/s43141-022-00311-w</u>
03.	Rasel Ahmed, Rajnee Hasan, Md. Wali Ullah and <u>Borhan Ahmed</u> . 2021. Molecular evolution and genetic analysis of Mesta yellow vein mosaic virus and associated betasatellites. Preprint at bioRxiv. DOI: <u>https://doi.org/10.1101/2021.09.05.459025</u>
04.	Md Sabbir Hossain, Borhan Ahmed, Md. Wali Ullah, Md Samiul Haque and Md. Shahidul Islam. 2021. Genome-wide Identification and Characterization of Expansin Genes in Jute. Tropical Plant Biology 15: 40-54. DOI: https://doi.org/10.1007/s12042-021-09296-1
05.	Md. Abu Sadat, Md. Wali Ullah , Kazi Khayrul Bashar, Quazi Md. Mosaddeque Hossen, Md. Zablul Tareq and Md. Shahidul Islam. 2021. Genome-wide identification of F-box proteins in <i>Macrophomina phaseolina</i> and comparison with other fungus. Journal of Genetic Engineering and Biotechnology 19 (46). DOI: <u>https://doi.org/10.1186/s43141-021-00143-0</u>
06.	Md Sabbir Hossain, Borhan Ahmed, Md Wali Ullah, Nasima Aktar, Md Samiul Haque, Md Shahidul Islam. 2020. Genome-wide identification of fasciclin-like arabinogalactan proteins in jute and their expression pattern during fiber formation. Molecular Biology Reports 47(10): 7815–7829. DOI: https://doi.org/10.1007/s11033-020-05858-w
07.	Md Sabbir Hossain, Md Rasel Ahmed, Md. Wali Ullah , Ummay Honi, Md Zablul Tareq, Mohammad Saiful Alam Sarker, Borhan Ahmed, Md Shahidul Islam. 2020. Phenylalanine ammonia-lyase gene family (PAL): Genome wide characterization and transcriptional expression in jute (<i>Corchorus olitorius</i>). Journal of Bioscience and Agriculture Research, 26 (02), pp. 2185-2191. DOI: <u>https://doi.org/10.18801/jbar.260220.267</u>
08.	Md. Sabbir Hossain, Rasel Ahmed, Md. Wali Ullah , Shah Md Tamim Kabir, Md. Zablul Tareq and Borhan Ahmed. 2020. GENOME WIDE ANALYSIS AND EXPRESSION PROFILING OF HYDROXYCINNAMOYL COA: SHIKIMATE HYDROXYCINNAMOYL TRANSFERASE (HCT) IN JUTE (<i>Corchorus olitorius</i>). INTERNATIONAL JOURNAL OF BUSINESS, SOCIAL AND SCIENTIFIC RESEARCH 8(3): 92-97. DOI: <u>http://www.ijbssr.com/currentissueview/14013380</u>
09.	Yasufumi Hikichi, Md. Wali Ullah , Kouhei Ohnishi and Akinori Kiba. 2013. Mechanism of disease development caused by a multihost plant bacterium, <i>Pseudomonas cichorii</i> , and its virulence diversity. Journal of General Plant Pathology 79 (6): 379-389. DOI: <u>https://doi.org/10.1007/s10327-013-0461-7</u>
10.	Masayuki Tanaka, Md. Wali Ullah , Hitoshi Nakayashiki, Tatsuya Fukuda, Hiroyuki Mizumoto, Kouhei Ohnishi, Akinori Kiba, Yasufumi Hikichi. 2012. Implication of an Aldehyde Dehydrogenase Gene and a Phosphinothricin <i>N</i> -Acetyltransferase Gene in the Diversity of <i>Pseudomonas cichorii</i> Virulence. <i>Genes</i> 3 (1):62-80. DOI: <u>https://doi.org/10.3390/genes3010062</u>

11.	Md. Abdul Latif, Md. Wali Ullah , Mohd Yusop Rafii and Md. Tajul Islam. 2011. Management of ufra disease of rice caused by <i>Ditylenchus angustus</i> with nematicides and resistance. African Journal of Microbiology Research 5 (13):1660-1667. DOI: <u>https://doi.org/10.5897/AJMR11.265</u>
(c) l	Popular Artic/Monograph/Bulletin/Book: 01
01.	Md. Wali Ullah and Md. Shahidul Islam. 2022. Flowering Pathway of Jute Based on Genomic Data. In: Zhang, L., Khan, H., Kole, C. (eds) The Jute Genome. Compendium of Plant Genomes. Springer, Cham. <u>https://doi.org/10.1007/978-3-030-91163-8_20</u>
(d)	List of Seminar papers/Workshop/Symposium Proceedings: 11
01.	Md. Wali Ullah , Md. Samiul Haque and Md. Shahidul Islam. First Report of <i>Fusarium</i> oxysporum Causing Fusarium Wilt on Jute (<i>Corchorus olitorius</i>) in Bangladesh. 9 th International Plant Tissue Culture & Biotechnology Conference, Dhaka, Bangladesh, February 8-10, 2020.
02.	Md. Wali Ullah, Risa Maenaka, Kenji Kai, Hiroyuki Mizumoto, Kouhei Ohnishi, Akinori Kiba, Hideo Hayashi and Yasufumi Hikichi. Implication of <i>pat</i> Encoding Phosphinothricin N-acetyltransferase in Pyoverdine Secretion of <i>Pseudomonas cichorii</i> . Annual Meeting of the Phytopathological Society of Japan, Gifu, Japan, March 27-29, 2013.
03.	Md. Wali Ullah, Masayuki Tanaka, Hiroyuki Mizumoto, Kouhei Ohnishi, Akinori Kiba and Yasufumi Hikichi. Iron acquisition by phosphinothricin <i>N</i> -acetyltransferase-regulated siderophore may be one of determinants for virulence of <i>Pseudomonas cichorii</i> . XV international congress on molecular Plant-Microbe interaction, Koyoto, Japan, July 29-August 2, 2012.
04.	Md. Wali Ullah, Masayuki Tanaka, Hiroyuki Mizumoto, Kouhei Ohnishi, Akinori Kiba and Yasufumi Hikichi. Phosphinothricin <i>N</i> -acetyltransferase gene of <i>Pseudomonas cichorii</i> strain SPC9018 is implicated in its siderophore productivity, relating to its virulence on eggplant. Annual Meeting of the Phytopathological Society of Japan, Fukuoka, Japan, March 28-30, 2012.
05.	Md. Wali Ullah , Masayuki Tanaka, Hiroyuki Mizumoto, Kouhei Ohnishi, Akinori Kiba and Yasufumi Hikichi. Role of phosphinothricin <i>N</i> -acetyltransferase in virulence of <i>Pseudomonas cichorii</i> strain SPC9018 on eggplant. The 2 nd Korea-Japan Joint Symposium, Fukuoka, Japan, March 27-28, 2012. (<i>Awarded</i>)
06.	Md. Wali Ullah, Masayuki Tanaka, Hiroyuki Mizumoto, Kouhei Ohnishi, Akinori Kiba and Yasufumi Hikichi. Involvement of siderophore productivity of <i>Pseudomonas cichorii</i> in its virulence on eggplant but not lettuce. Annual Meeting of the Phytopathological Society of Japan (Kansai sub-committee), Takamatsu, Japan, October 1-2, 2011.
07.	Md. Wali Ullah, Masayuki Tanaka, <u>Makoto Koyanagi</u> , <u>Shigeru Kajihara</u> , Hiroyuki Mizumoto, Kouhei Ohnishi, Akinori Kiba and Yasufumi Hikichi. Involvement of phosphinothricin <i>N</i> -acetyltransferase gene (<i>pat</i>) in virulence diversification of <i>Pseudomonas cichorii</i> . The 5 th Young Bacteriologist Colosseum, Katsurahama, Kochi, Japan, August 8-10, 2011.

08.	Md. Wali Ullah, Masayuki Tanaka, Kouhei Ohnishi, Hiroyuki Mizumoto, Ayami Kanda, Akinori Kiba and Yasufumi Hikichi. Independent involvement of <i>hrp</i> , Aldehyde Dehydrogenase Gene (<i>aldH</i>) and Phosphinothricin N-acetyltransferase Gene (<i>pat</i>) in Virulence Diversification of <i>Pseudomonas cichorii</i> . Annual Meeting of the Phytopathological Society of Japan, Fuchu, Japan, March 27-29, 2011.
09.	Yasufumi Hikichi, Masayuki Tanaka, Md. Wali Ullah , Hiroyuki Mizumoto, Kouhei Ohnishi and Akinori Kiba. 2011. An aldehyde dehydrogenase gene and a phosphinothricin <i>N</i> -acetyltransferase gene compose of a pathogenicity island with <i>hrp</i> genes of <i>Pseudomonas cichorii</i> . The 4 th ASIAN Conference on Plant Pathology Concurrent with the 18 th Biennial Australasian Plant Pathology Society Conference Darwin, Australia, April 26-29, 2011.
10.	Md. Wali Ullah, Masayuki Tanaka, Kouhei Ohnishi, Akinori Kiba and Yasufumi Hikichi. 2010. Involvement of <i>hrcC</i> and <i>aldH</i> in pathogenicity of <i>Pseudomonas cichorii</i> on <i>Asteraceae</i> plants. Annual Meeting of the Phytopathological Society of Japan, Kyoto, Japan, April 18-20, 2010.

15. Research Achievement

(i) No. of Technology Developed- 08

Sl. No.	Name of Technology Developed	Published	Year
01.	Development of semi-selective media to pure culture of Fusarium	BARJ	2017
	oxysporum from infected plant parts by suppression of saprophytic	Programme	
	fungi and bacteria.		
02.	Development of long term (5 to 10 years) preservation method of	BARJ	2017
	the fungus using cheap dry filter paper technique for future use at	Programme	
	any time.		
03.	Development of fungal DNA barcoding library with cloning to	BARJ	2018-
	identify the actual pathogen with more scientific way, and to see	Programme	2019
	any new pathogen or more virulent strain are emerging in future or		
	not.		
04.	Development of a transformation vector (pH7WG2-CsNDR1)	BARJ	2019
	using gateway technology with a reported citrus CsNDR1 gene to	Programme	
	promote salicylic acid mediated disease resistance in plant.		
05.	Development of an expression vector (pH7WG2-NtPR5) using	BARJ	2019
	gateway technology with a reported tobacco osmotin gene to	Programme	
	overproduction of <u>P</u> athogenesis <u>R</u> elated (PR) proteins for disease		
	resistance in plant.		
06.	Development of a transformation vector (pH7WG2-VvPR2) using	BARJ	2019
	gateway technology with a reported grape β -1-3-glucanase gene to	Programme	
	increase the expression of PR-proteins for disease resistance in		
	plant.		

07.	Development of a destination vector (pH7WG2-GhPR5) using	BARJ	2019
	gateway technology with a reported cotton TLP (Thaumatin-Like	Programme	
	Protein) gene to overproduction of PR-proteins for disease		
	resistance in plant.		
08.	Development of a transformation vector (pH7WG2-StPR2) using	BARJ	2020
	gateway technology with a reported potato β -1-3-glucanase gene	Programme	
	to overproduction of PR-proteins for disease resistance in plant.		
1			

(ii) No. of Research Programme

- (a) Developed 29
- (b) Supervised 29

Sl	Name of Research Programme Developed and Supervised	Published	year
No.			
01.	Preparation of semi-selective media to pure culture of <i>Fusarium oxysporum</i> from infected plant parts by suppression of saprophytic fungi and bacteria.	BARJ programme	2016- 2017
02.	Development of long term (5 to 10 years) preservation method of the fungus using cheap dry filter paper technique for future use at any time.	BARJ programme	2016- 2017
03.	Varietal trial (MLT-Multi-location trial) of BARJ developed advance line (Robi-1) of <i>Corchorus olitorius</i> at different locations in Bangladesh.	BARJ programme	2016- 2017
04.	Establishment of fungal DNA barcoding library with cloning to identify the actual pathogen with more scientific way, and to see if any new pathogen or more virulent strain are emerging in future.	BARJ programme	2017- 2018
05.	Morphological characterization of <i>Fusarium oxysporum</i> , <i>Fusarium equiseti</i> , <i>Colletotrichum gloeosporioides</i> , <i>Macrophomina paseolina</i> and <i>Alternaria</i> sp. those are frequently observed in affected jute field.	BARJ programme	2017- 2018
06.	First identification of a recently emerging devastating pathogen <i>Fusarium oxysporum</i> causing Fusarium wilt disease on jute.	BARJ programme	2017- 2018
07.	Varietal trial (MLT-Multi-location trial) of BARJ developed advance lines (Shoshi-1 and Shoshi-2) of <i>C. capsularis</i> at different locations in Bangladesh.	BARJ programme	2017- 2018
08.	To promote Salicylic Acid (SA) associated disease resistance in plant, a transformation vector (pH7WG2- <i>CsNDR1</i>) has been constructed using Gateway technology with a citrus <i>CsNDR1</i> gene.	BARJ programme	2018- 2019
09.	Construction of an expression vector (pH7WG2- <i>NtPR5</i>) using gateway technology with a tobacco osmotin gene to overproduction of <u>Pathogenesis Related</u> (PR) proteins for disease resistance in plant.	BARJ programme	2018- 2019
10.	Development of a transformation vector (pH7WG2- $VvPR2$) using gateway technology with a reported grape β -1-3-glucanase gene to increase the expression of PR-proteins for disease resistance in plant.	BARJ programme	2018- 2019

Sl	Name of Research Programme Developed and Supervised	Published	year
No.			
11.	Construction of a destination vector (pH7WG2-GhPR5) using	BARJ	2018-
	gateway technology with a reported cotton TLP (Thaumatin-Like	programme	2019
	Protein) gene to overproduction of PR-proteins for disease		
10	resistance in plant.	DADI	2018
12.	Development of a transformation vector ($pH/wG2-SIPR2$) using gateway, technology with a potato β_{-1} -3-glucanase gene to	DAKJ	2018-
	overproduction of PR-proteins for disease resistance in plant.	programme	2019
13.	Genome-wide identification and characterization of the antifungal	BARJ	2018-
	Pathogenesis- <u>R</u> elated- <u>1</u> (PR-1) genes in both <i>Corchorus olitorious</i>	programme	2019
	and C. capsularis.		_017
14.	Genome-wide identification and characterization of the β -1,3-	BARJ	2018-
	glucanases genes in both Corchorus olitorious and C. capsularis.	programme	2019
15.	Genome-wide identification and characterization of the	BARJ	2018-
	Thaumatin-like proteins (TLP) in both <i>Corchorus olitorious</i> and <i>C</i> .	programme	2019
1.6	capsularis.		2019
16.	Chitinase genes in both Corcharus alitarious and C consularis	BARJ	2018-
17	Continuase genes in both <i>corenorus otilorious</i> and c. <i>cupsularis</i> .	programme	2019
17.	Germplasm seed multiplication using 101 accessions from 10 wild	BARJ	2018-
	Corchorus spp. in Manikgonj and BARJ field.	programme	2019
18.	Morphological characterization of 101 accessions from 10 wild	BARJ	2018-
	Corchorus spp.	programme	2019
19.	Genome-wide identification of fasciclin-like arabinogalactan	BARJ	2018-
	proteins in jute and their expression pattern during fiber formation.	programme	2019
20.	Genome-wide identification of expansin genes in jute and their	BARJ	2018-
	expression patterns in fiber development.	programme	2019
21.	Development of transgenic jute plants using constructed	BARJ	2019-
	transformation vector, pH7WG2-CsNDR1 using tip infiltration	programme	2020
	method.		
22.	Screening of disease resistant jute from developed citrus <i>CsNDR1</i>	BARJ	2019-
	gene inserted transgenic plants.	programme	2020
23.	Genome wide identification and domain organization of lectin	BARJ	2019-
	genes in Dhaincha (Sesbania bispinosa).	programme	2020
24.	Phenylalanine ammonia-lyase gene family (PAL): Genome wide	BARJ	2019-
	characterization and transcriptional expression in jute (Corchorus	programme	2020
25	olitorius).	DADI	2010
25.	by drowy cinnamove CoA: shikimate hydrowy cinnamove transferase	BAKJ	2019-
	(HCT) in jute (<i>Corchorus olitorius</i>)	programme	2020
26.	Genome-wide identification of F-box proteins in <i>Macrophomina</i>	BARJ	2019-
	phaseolina and comparison with other fungus.	programme	2020
27	Development of an inexpensive and timesaving efficient DNA	BARJ	2020-
	isolation protocol from high mucilaginous jute plant without	programme	2021
	phenol/chloroform extraction, ethanol, or isopropanol precipitation		2021
	steps.		

Sl	Name of Research Programme Developed and Supervised	Published	year
No.			
28.	Collection of leaf samples and stored (-80°C) as powder formed	BARJ	2020-
	using liquid nitrogen for DNA isolation from 93 germplasm	programme	2021
	accessions of 10 wild jute species.		
29.	Study about evolutionary history of Dhaincha (Sesbania) genome.	BARJ	2020-
		programme	2021

(ii) No. of Research Programme

(c) Executed -24

Sl.	Name of Research Programme Executed	Published	year
No.			
01.	Preparation of semi-selective media to pure culture of Fusarium	BARJ	2017-
	oxysporum from infected plant parts by suppression of saprophytic	programme	2018
	fungi and bacteria.		
02.	Development of long term (5 to 10 years) preservation method of	BARJ	2017-
	the fungus using cheap dry filter paper technique for future use at any time	programme	2018
03.	Varietal trial (MLT-Multi-location trial) of BARJ developed	BARJ	2017-
	advance line (Robi-1) of <i>Corchorus olitorius</i> at different locations	programme	2018
	in Bangladesh.	1 0	2010
04.	Establishment of fungal DNA barcoding library with cloning to	BARJ	2018-
	identify the actual pathogen with more scientific way, and to see if	programme	2019
05	any new pathogen or more virulent strain are emerging in future.	DADI	2019
05.	Fusarium equiseti Colletotrichum aloeosporioides	DAKJ	2018-
	Macrophomina paseolina and Alternaria sp. those are frequently	programme	2019
	observed in affected jute field.		
06.	First identification of a recently emerging devastating pathogen	BARJ	2018-
	Fusarium oxysporum causing Fusarium wilt disease on jute.	programme	2019
07.	Varietal trial (MLT-Multi-location trial) of BARJ developed	BARJ	2018-
	advance lines (Shoshi-1 and Shoshi-2) of C. capsularis at different	programme	2019
	locations in Bangladesh.		
08	To promote Salicylic Acid (SA) associated disease resistance in	BARI	2019-
00.	plant a transformation vector (pH7WG2-CsNDR1) has been	programme	2017
	constructed using Gateway technology with a citrus CsNDR1 gene	1 8	2020
09	Construction of an expression vector (pH7WG2- <i>NtPR5</i>) using	BARI	2019-
07.	gateway technology with a tobacco osmotin gene to	programme	2020
	overproduction of Pathogenesis Related (PR) proteins for disease	1 0	2020
	resistance in plant.		
10.	Development of a transformation vector (pH7WG2-VvPR2) using	BARJ	2019-
	gateway technology with a grape β -1-3-glucanase gene to	programme	2020
	increase the expression of PR-proteins for disease resistance in	_	
	plant.		
11.	Construction of a transformation vector (pH7WG2- <i>GhPR5</i>) using	BARJ	2019-
	gateway technology with a cotton TLP (Thaumatin-like proteins)	programme	2020

Sl.	Name of Research Programme Executed	Published	year
No.			
	gene to overproduction of PR-proteins for disease resistance in		
	plant.		
12.	Development of a transformation vector (pH7WG2-StPR2) using	BARJ	2019-
	gateway technology with a potato β -1-3-glucanase gene to	programme	2020
	overproduction of PR-proteins for disease resistance in plant.		
13.	Genome-wide identification and characterization of the β -1,3-	BARJ	2019-
	glucanases genes in both Corchorus olitorious and C. capsularis.	programme	2020
14.	Genome-wide identification and characterization of the	BARJ	2019-
	Thaumatin-like proteins (TLP) in both Corchorus olitorious and	programme	2020
	C. capsularis.		
15.	Genome-wide identification and characterization of the Class III	BARJ	2019-
	Chitinase genes in both <i>Corchorus olitorious</i> and <i>C. capsularis</i> .	programme	2020
16.	Germplasm seed multiplication using 101 accessions from 10 wild	BARJ	2019-
	Corchorus spp. in Manikgonj and BARJ field.	programme	2020
17.	Morphological characterization of 101 accessions from 10 wild	BARJ	2019-
	Corchorus spp.	programme	2020
18.	Genome-wide identification of fasciclin-like arabinogalactan	BARJ	2019-
	proteins in jute and their expression pattern during fiber formation.	programme	2020
19.	Genome-wide identification of expansin genes in jute and their	BARJ	2019-
	expression patterns in fiber development.	programme	2020
20.	Development of transgenic plants using constructed	BARJ	2019-
	transformation vector, pH7WG2-CsNDR1 using tip infiltration	programme	2020
	method.		
21.	Phenylalanine ammonia-lyase gene family (PAL): Genome wide	BARJ	2019-
	characterization and transcriptional expression in jute (Corchorus	programme	2020
	olitorius).		
22.	Genome wide analysis and expression profiling of	BARJ	2019-
	hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase	programme	2020
	(HC1) in jute (<i>Corchorus olitorius</i>).	DADI	2020
23.	Genome-wide identification of F-box proteins in Macrophomina	BARJ	2020-
	phaseolina and comparison with other fungus.	programme	2021
24.	Collection of leaf samples and stored (-80°C) as powder formed	BARJ	2020-
	using liquid nitrogen for DNA isolation from 93 germplasm	programme	2021
	accessions of 10 wild jute species.		

16. Outstanding Achievement

- (i) <u>Variety development (Group work)</u>: New jute variety development (BJRI Tossa pat 8)
- (ii) <u>Genome Sequencing (Group work)</u>: Genome sequence of Dhaincha (*Sesbania bispinosa*).
- (iii) <u>Award received</u>: Excellent Poster Presentation Award in the 2nd Korea-Japan Joint Symposium held at Fukuoka International Congress Center, Fukuoka, Japan on March 27-28, 2012.

(iv) <u>Scholarship received</u>:

- a) Japanese Government (Monbukagakusho, MEXT) Scholarship (ID No.- 114187) in PhD. (April, 2011-March, 2013).
- b) Rotary Yoneyama Memorial Foundation (Japan) Scholarship (ID No.-15055) during MS (April, 2009-March, 2010).
- c) Nankoku City Foundation Scholarship (Japan) during Ph. D. (April, 2010- March, 2011).
- d) Japan Student Service Organization (JASSO) Scholarship (Japan) during MS (April, 2008- March, 2009).
- e) Academic Merit Scholarship from Satkhira District Commission during HSC (1996).

Address: Dr. Md. Wali Ullah, Senior Scientific Officer, Molecular Biology Department, Genetic Resources and Seed Division, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka-1207